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1. (a) Let ε > 0. Take N ∈ N such that N > 3/ε.
If n > N ,∣∣∣ n2 − 1
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(b) Since (n+ 1)2 = n2 + 2n+ 1 ≥ 4n, for all n ∈ N,
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. Then for any n ∈ N,∣∣∣ √n
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2. (nxn) is convergent sequence, then there exists l ∈ R such that

limnxn = l

Let ε0 = 1, there exist N1 ∈ N such that
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if n ≥ N ,

|nxn − l| < ε0

l − 1 < nxn < l + 1
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Take C = max{|l = 1|, |l − 1|}
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C

n

Let ε > 0. Choose N2 ∈ N such that N2 > ε/C
Then, take N = max{N1, N2}. If n ≥ N
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3. (a) Let (xn) be a Cauchy sequence and let ε = 1.
There exist H ∈ N such that if n ≥ H, then |xn − xH | < 1.
Hence, we have |xn| ≤ |xH |+ 1 for all n ≥ H.
Then, set M = sup{|x1|, |x2|, · · · , |xH−1|, |xH |+ 1},
Thus, |xn| ≤M for all n ∈ N.

(b) For any N ∈ N, choose odd number n > N . Let m = n+ 1, m is even number.
Take ε0 = 1.
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4. Let ε > 0.
Since lim rn = 0, there exist N ∈ N such that |rn| < ε(1− r) for all n > N .
Take this N , if m > n ≥ N ,

|ym − yn| ≤ |ym − ym−1|+ |ym−1 − ym−2|+ · · ·+ |yn+1 − yn|
< rn + rn−1 + · · ·+ rm−2 + rm−1

< rn + rn+1 + · · ·

=
rn
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< ε

Then, (yn) is Cauchy sequence.
Thus, by Cauchy Convergence Criterion, (yn) is convergent and lim yn exists.
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