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1. (a) Let € > 0. Take N € N such that N > 3/e.
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(b) Since (n+1)2 =n?+2n+1>4n, for all n € N,
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Pick ¢y = % Then for any n € N,

2. (nx,) is convergent sequence, then there exists [ € R such that
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Let ¢g = 1, there exist N; € N such that
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Take C' = max{|l = 1|,|l — 1|}
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Let € > 0. Choose Ny € N such that Ny > ¢/C
Then, take N = max{Ny, No}. Ilf n > N
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3. (a) Let (z,) be a Cauchy sequence and let € = 1.
There exist H € N such that if n > H, then |z, — zy| < 1.
Hence, we have |z, | < |zg|+ 1 for alln > H.
Then, set M = sup{|z1],|zal, -, |xg-1|, |zH| + 1},
Thus, |z,| < M for all n € N.

(b) For any N € N, choose odd number n > N. Let m = n + 1, m is even number.
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4. Let € > 0.

Since lim 7™ = 0, there exist N € N such that [r"| < e(1 —r) for all n > N.
Take this N, if m >n > N,
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Then, (y,) is Cauchy sequence.
Thus, by Cauchy Convergence Criterion, (y,) is convergent and lim y,, exists.



